Biological Report 82(11.71) March 1987 TR EL-82-4 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico) ## **PIGFISH** Fish and Wildlife Service Coastal Ecology Group Waterways Experiment Station U.S. Department of the Interior U.S. Army Corps of Engineers Biological Report 82(11.71) TR EL-82-4 March 1987 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico) **PIGFISH** by Frederick C. Sutter and Thomas D. McIlwain Gulf Coast Research Laboratory Fisheries Research and Development East Beach Boulevard Ocean Springs, MS 39564 > Project Manager Carroll Cordes Project Officer David Moran National Wetlands Research Center U.S. Fish and Wildlife Service 1010 Gause Boulevard Slidell, LA 70458 Performed for Coastal Ecology Group Waterways Experiment Station U.S. Army Corps of Engineers Vicksburg, MS 39180 and National Wetlands Research Center Research and Development Fish and Wildlife Service U.S. Department of Interior. Washington, DC 20240 This series may be referenced as follows: U.S. Fish and Wildlife Service. 1983-19. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates. U.S. Fish Wildl. Serv. Biol. Rep. 82(11). U.S. Army Corps of Engineers, TR EL-82-4. This profile may be cited as follows: Sutter, F. C., and T. D. McIlwain. 1987. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico)--pigfish. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.71). U.S. Army Corps of Engineers, TR EL-82-4. 11 pp. #### **PREFACE** This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and biologists with a brief comprehensive sketch of the biological characteristics and environmental requirements of the species and to describe how populations of the species may be expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly planned and financed by the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service. Suggestions or questions regarding this report should be directed to one of the following addresses. Information Transfer Specialist National Wetlands Research Center U.S. Fish and Wildlife Service NASA-Slide11 Computer Complex 1010 Gause Boulevard Slidell, LA 70458 \mathbf{or} U.S. Army Engineer Waterways Experiment Station Attention: WESER-C Post Office Box 631 Vicksburg, MS 39180 ## CONVERSION TABLE ## Metric to U.S. Customary | <u>Multiply</u> | <u>By</u> | To Obtain | |-----------------------------|------------------------|-----------------------| | millimeters (mm) | 0. 03937 | inches | | centimeters (cm) | 0. 3937 | inches | | meters (m) | 3. 281 | feet | | meters (m) | 0. 5468 | fathoms | | kilometers (km) | 0. 6214 | statute miles | | kilometers (km) | 0. 5396 | nautical miles | | square meters (m²) | 10. 76 | square feet | | square kilometers (km²) | 0. 3861 | square miles | | hectares (ha) | 2. 471 | acres | | liters (1) | 0. 2642 | gallons | | cubic meters (m³) | 35. 31 | cubic feet | | cubic meters (m³) | 0. 0008110 | acre-feet | | milligrams (ng) | 0. 00003527 | ounces | | grams (g) | 0. 03527 | ounces | | kilograms (kg) | 2. 205 | pounds | | metric tons (t) | 2205. 0 | pounds | | metric tons (t) | 1. 102 | short tons | | kilocalories (kCal) | 3. 968 | British thermal units | | Celsius degrees ("C) | 1.8(°C) + 32 | Fahrenheit degrees | | <u>U.</u> | S. Customary to Metric | | | i nches | 25. 40 | millimeters | | inches | 2. 54 | centimeters | | feet (ft) | 0. 3048 | neters | | fathons | 1. 829 | meters | | statute miles (mi) | 1. 609 | kilometers | | nautical niles (NMI) | 1. 852 | kilometers | | square feet (ft²) | 0. 0929 | square meters | | square miles (Mi²) | 2. 590 | square kilometers | | acres | 0. 4047 | hectares | | gallons (gal) | 3. 785 | liters | | cubic feet (ft³) | 0. 02831 | cubic meters | | acre-feet | 1233. 0 | cubic meters | | ounces (OZ) | 283. 5 | milligrams | | ounces (OZ) | 28. 35 | grams | | pounds (1b) | 0. 4536 | ki l ograns | | pounds (1b) | . 00045 | metric tons | | short tons (ton) | 0. 9072 | metric tons | | British thermal units (Btu) | 0. 2520 | kilocalories | | Fahrenheit degrees (°F) | 0.5556(°F = 32) | Celsius degrees | ## CONTENTS | REFACE |-----------------------------|-----|-----|---|-----|-----|----|---|---|-----|---|-----|---|---|-----|-----|---|---|---|-----|---|---| | CONVERSION TABLE | CKNOWLEDGMENTS | IOMENCLATURE/TAXONOMY/RANGE | IORPHOLOGY/IDENTIFICATION A | IDS | REASON FOR INCLUSION | IN | THE | Ξ | SEF | RIE | ES | : | : | : : | : | : : | : | : | : : | : : | : | : | : | : : | : | : | | IFE HISTORY | Spawning | Eggs | Larvae | Juveniles | Adults | GROWTH CHARACTERISTICS | HE FISHERY | COLOGICAL ROLE | Food Habits | Predators | Parasites and Diseases . | ENVIRONMENTAL REQUIREMENTS | Temperature and Salinity | Dissolved Oxygen | Substrate | ITERATURE CITED | #### ACKNOWLEDGMENTS We gratefully acknowledge peer reviews by R. L. Shipp, University of South Alabama, Mobile, and H. D. Hoese, University of Southwestern Louisiana, Lafayette. Figure 1. Pigfish (adult). #### **PIGFISH** #### NOMENCLATURE/TAXONOMY/RANGE | Scienti | fic name | . Orthopristis | |--------------|------------------------|----------------| | chrys | <u>optera</u> (Linnaeu | s) | | Preferr | ed common na | ame Pigfish | | (Figu | re 1) | _ | | Class | | Ostei chthyes | | Order | | Perci formes | | Fani l y | | Haemıl i dae | Geographical range: Pigfish are distributed along the Atlantic coast from Massachusetts (Hoese and Moore 1977) to the tip of Florida, but are uncommon north of Virginia (Breder 1948). They are found throughout the Gulf of Mexico (Figure 2; Briggs 1958) and in coastal waters around Bermuda. #### MORPHOLOGY/IDENTIFICATION AIDS. The following descriptive Characteristics for pigfish were taken from Courtenay and Sahlman (1978): Body ovate-elliptical, considerably com pressed, its depth contained 2.6 to 3.0 times in standard length (SL). Posterior edge of upper jaw not reaching to below eye; two pores and a median groove on chin; jaws with a narrow band of slender teeth; preopercular margin very slightly serrate; gill rakers short and slender, about 12 on lower limb of first arch. Dorsal fin with 12 or 13 spines and 15 or 16 soft rays; anal fin with 3 spines and 12 or 13 soft rays; dorsal and anal fin spines enclosed in a deep scaly sheath, the soft rays naked. Scales ctenoid; pored lateral-line scales 55 to 58; 10 longitudinal rows of scales above the lateral line and 19 rows below. Color of body: light blue-gray above, shading gradually into silver below; each scale of body with a blue center, the edge with a bronze spot; these spots form distinct orange-brown stripes extending obliquely upward Figure 2. Distribution of the pigfish. and backward on back and sides, those below being nearly horizontal; head with bronze spots; fins yellow-bronze with dusky margins. #### REASON FOR INCLUSION IN THE SERIES Pigfish are common inhabitants of warm gulf waters (Reid 1954). They are frequently taken by sport anglers, especially in Florida waters, and are considered to be a good quality food fish (Darcy 1983); however, they have only limited economic importance (Joseph and Yerger 1956). Pigfish are often trapped and used for live bait (Carr 1976). They are also used as a source of food by other predatory species (Smith 1907). #### LIFE HISTORY #### Spawni ng Pigfish mature by their second year of life (Taylor 1916; Hildebrand and Cable 1930). Reid (1954) concluded that spawning in gulf waters near Cedar Key, Florida, was probably in spring, since small young-of-theyear (23 to 28 mm SL) first appeared He also noted a bimodal in May. length-frequency curve for that nonth, suggesting that pigfish in this area of the gulf may have two breeding peaks or "growth spurts." females taken during July from the Cedar Key area showed some signs of maturing gonads; however, they were from ripe. After compari ng nonthly average lengths seasonality of fish in other areas, Grines and Mountain (1971) concluded that pigfish apparently spawn in about March in gulf waters near Crystal River, Florida. Gunter (1945) found ripe males in Texas gulf waters in March and April and suggested that the fish probably spawn there before June. Other studies from the Gulf of Mexico also indicate that spawning occurs in the late winter or spring: Tampa Bay, Florida, March-May (Springer and Woodburn 1960); Alligator Harbor, Florida, March (Joseph and Yerger 1956); eastern Gulf of Mexico, January-May (Darcy 1983); and Horn Island, Mississippi, March-April (Franks 1970). (1965) reported that pigfish larvae were found off Port Aransas from late through Hasti ngs February June. (1972) noted that spawning may occur in open water prior to inshore migrations during March-April in St. Andrew Bay, Florida. Pigfish spawn during March to June along the inside shores of Bogue and Shackleford Banks, North Carolina, and within the harbor and estuaries on the outer shores of these banks (Hildebrand and Cable 1930). Spawning apparently takes place during the early evening hours (Towers 1928; Hildebrand and Cable 1930). #### Eggs Johnson (1978) reported that pigfish eggs are buoyant, highly transparent, and spherical (0.7 to 0.8 mm in diameter). The eggs have a single oil globule (rarely two or three) that averages 0.16 mm in diameter. Pigfish eggs are easily con-fused with those of silver perch (Bairdiella chrysoura). This problem is magnified by the fact that the two species spawn at nearly the same time and in similar areas. #### Larvae Hildebrand and Cable (1930) provided pigfish descriptions of larval collected from North Carolina waters. Watson (1983) updated their descriptions using a series of larval pigfish speci mens from lower Cape Estuary, North Carolina, and from the gulf waters off Texas. Piafish larvae can be separated from those of other haemlids (grunts) by the presence of 11 soft rays in the anal fin (Watson 1983). Darcy (1983) cited a study by Houde et al. (1979) describing the distribution and abundance of pigfish larvae in the eastern gulf. They found one peak of abundance in late winter and spring, mainly inside a depth of 50 m #### Juveni l es Juvenile pigfish are fully scaled by 25 mm SL and achieve adult form by 70 mm SL (Figure 3; Hildebrand and Cable 1930). At 25 mm they have a prominent dark midlateral band with an additional dark band from the nape to the base of the second dorsal fin. The mid-lateral bands often disappear at a length of approximately 40 mm SL, but the anterior position of the lower band may remain longer (Johnson 1978). Juvenile pigfish have yellow and green horizontal lines along their sides that are most prominent on the cheeks and opercles. Grines and Mountain (1971), working in an area of thermal effluent near Crystal River, Florida, first noted young-of-the-year pigfish in trawl samples taken during June. Juveni l e pigfish (smallest, 12.5 mm SL) were first taken in April from Tampa Bay (Springer and Woodburn 1960) and St. Andrew Bay, Florida (Hastings 1972). Juveniles were most abundant during May in Cedar Key, Flori da (Reid 1954). In **Alligator** Harbor, Florida, Joseph and Yerger (1956) reported that juveniles (41 mm SL) were present by June. **Gunter (1945)** Hi l debrand (1954)collected smallest pigfish in shallow bays along the Texas gulf coast. Juvenile pigfish may associate with other species of fish. Darcy (1983) referenced a study by Wang and Raney (1971) from Charlotte Harbor, Florida, where young pigfish (16-25 mm SL) were found in mixed schools with small pinfish. Figure 3. Juvenile piqfish, 38 mm TL (from Hildebrand and Cable 1930, Figure 37). #### **Adults** Adult pigfish are common in the northern and more saline coastal areas of the Gulf of Mexico (Springer and Woodburn 1960; Mbe and Martin 1965; Hoese and Moore 1977). (1954) reported that adult pigfish were found in Cedar Key, Florida, throughout the year (except January); however, pigfish were most abundant during summer months. Grines and Mountain (1971) also noted that pigfish were more commonly taken during later summer and fall months in Crystal River, Florida. Along the coastal areas of north Florida, pigfish have been reported to be among the most abundant finfish collected (Joseph and Yerger 1956; Hastings et al. 1976; Ogren and Brusher 1977; Pristas and Trent 1978; Darcy 1983). Adult pigfish also occur in the offshore and open-shelf areas of the Gulf of Mexico. Darcy (1983) noted a study by Cody et al. (1978) stating that pigfish occurred in 40%-43% of all trawl catches on the white shrimp grounds off the Texas gulf coast. Pigfish have also been taken from offshore reefs and platalong the northern (Hastings 1972; Hastings et al. 1976; Darcy 1983). Mbe and Martin (1965) reported that pigfish may be more abundant in offshore waters than inshore in the southern regions of the Gulf of Mexico. Hildebrand (1954) noted that pigfish were abundant on the shell banks off Campeche, Mexico. #### **GROWTH CHARACTERISTICS** Pigfish reach a maximum length of 46 cm SL (Courtenay and Sahlman 1978) and a weight of 0.9 kg (2 lb) (Hildebrand and Cable 1930; Konchina 1977; Darcy 1983). Few pigfish older than 3 years old and very few age 4 fish have been taken along the Atlantic coast (Taylor 1916; Hildebrand and Cable 1930). Information on growth of pigfish in gulf waters is limited to age 0 and age 1 fish (Table 1). Growth rates based on these data range from 7 mm SL/mo (Reid 1954) to 9.3 mm SL/mo from June to October. Growth during October to April slows to 3.1 mm SL/mo (Grimes and Mbuntain 1971) to 5.5 mm SL/mo (Reid 1954). #### THE FISHERY statistics Commercial are specifically reported for pigfish, but have been combined with those for the other grunts by the Bureau of Commercial Fisheries and National Marine Fisheries Service. Pigfish are taken in seines, traps, trawls, and by (Courtenay and Sahlman handl i nes 1978). Most are marketed as live bait (especially in Texas); they are also considered a good quality food fish (Darcy 1983) but have little economic Marine recreational landing statistics for pigfish in the Gulf of Mexico for 1979 and 1981-85 are summarized in Table 2; most are taken along Florida (gulf and Atlantic) and the Texas gulf coast waters. #### ECOLOGICAL ROLE #### Food Habits Feeding habits of pigfish vary with growth stage; they are primarily benthic carnivores as adults, possibly feeding nocturnally (Hastings et al. 1976), while young fish are planktivorous (Carr and Adams 1973; Darcy 1983). Reid (1954) found a shift in diet relative to increasing length for pigfish taken from Crystal River, Florida (Table 3). Small fish (25-50 mm TL) ate mostly copepods, while larger fish shifted to a diet of amphipods, shrimps, and other benthic Carr and Adams (1973), organi sns. who also studied juvenile pigfish (16-80 mm SL) in the Crystal River, found two distinct feeding phases. Smaller pigfish (16-30 mm) were planktivorous (eating copepods, mysids, and Table 1. Comparative monthly mean standard lengths (nm) for age 0 pigfish (from Grimes and Mountain 1971). | Study | Year
collected | June | Aug. | Oct. | Dec. | Feb. | Apri l | |--|-------------------|--------------|--------------|--------------|--------------|-------|--------| | Springer and
Woodburn 1960
(Tanpa Bay) | 1957 | 40. 0 | 62. 1 | | | | 17. 5 | | Reid 1954
(Cedar Keys) ^a | 1951 | 49. 0 | 66. 0 | 77. 0 | | 84. 0 | 110. 0 | | Grines 1971 ^b | 1969 | | | | | | | | Crystal River-Affected | | 44. 0 | 66. 0 | 70. 0 | 79. 0 | | 98. 0 | | Crystal River-Nonaffected | | 51. 0 | 75. 0 | | | | 111. 0 | | Grines and | | | | | | | | | Mountain 1971 ^b | 1970 | | | | | | | | Crystal River-Affected | | | 78. 9 | 94. 0 | 88. 2 | | 102. 9 | | Crystal River-Nonaffected | | 50. 0 | 68. 9 | 87. 2 | 90. 8 | | 105. 8 | a Lengths estimated from graph. followed by a postlarval shrimp), two-phase carnivorous stage in which benthic invertebrates were the major i tens. The transition from planktivore to carnivore was gradual, beginning at about 26 mm SL, and was complete by 41-45 mm SL. **Polychaetes** were important in the diet of pigfish longer than 30 mm but as fish grew larger than 55 nm cari dean and penaeid shripp were consumed more frequently (Darcy 1983). #### **Predators** Pigfish are prey of Atlantic sharp-nose sharks, spotted seatrout, and weakfish (Radcliffe 1916; Hastings 1972; Darcy 1983). Other large piscivores, such as snapper and grouper, probably also prey on pigfish (Darcy 1983). #### **Parasites and Diseases** Pigfish have been reported to be parasitized by a monogenetic trematode that infests the gill filaments (Suydam 1971). Springer and Woodburn (1960) report that pigfish were killed by red tides in Tampa Bay, Florida. #### ENVIRONMENTAL REQUIREMENTS ## Temperature and Salinity Reid (1954) found mean water temperature and salinity values of 25.2 °C and 25.1 ppt in Crystal River, Florida, when pigfish were nost abundant. During December to April, when pigfish were taken less frequently, values of 15.9 °C and Statistical comparison of annual growth (monthly mean standard length vs. time) of fish from thermally affected (warmed by the effluent from a steam electric station) vs. nonaffected areas revealed no significant difference. Summary of recreational fishing statistics for pigfish in the Gulf of Table 2. Mexico. | | Total U.S.
catch
(thousands | Percent of catch taken in | | Catch
(thou | by Gulf
sands of | States
fish) | | |---------------------------------------|-----------------------------------|---------------------------|--------|----------------|---------------------|-----------------|-----| | Time period | of fish) | Gulf of Mexico | FL | AL | MS | LA | TX | | Jan-Dec ^a
1979 | 1, 992 | 76. 4 | 700 | | 34 | | 770 | | Mar-Dec ^b
1 981 | 2, 281 | 67. 0 | 1, 071 | | | | 428 | | Jan-Dec ^b
1982 | 2, 643 | 76. 2 | 1, 769 | | | 72 | 169 | | Jan-Dec ^C
1 983 | 2, 386 | 49. 2 | 1, 001 | 39 | * | | 115 | | Jan-Dec ^C
1 984 | 1, 731 | 66. 8 | 741 | | | * | 413 | | Jan-Dec ^d
1 98 5 | 2, 770 | 47. 4 | 587 | * | * | * | 726 | a.U.S. National Marine Fisheries Service (1980). 26.5 ppt were recorded. Roessler (1970) collected pigfish from Florida waters at temperatures of 19.5 to 30.6 $^{\circ}\text{C}$ and salinities of 17.2 to 44.1 ppt. A temperature range of 13.7 to 36 °C and a salinity range of 0 to 38 ppt was also provided by Roessler (1970) on the basis of published values for pigfish throughout the gulf. Springer and Woodburn (1960) reported a tolerance range of 19.1 to 35 ppt (mean = 28.9 ppt) and 17.5 to 32.5 °C for pigfish collected in Tampa Bay, Florida. In Barataria Bay, Louisiana, pigfish were taken between 6.2 and 24.3 ppt and between 17.3 and 30.0 °C (Dunham 1972). Pigfish apparently avoi d temperature water, migrating to deeper water during the winter (Hfldebrand and Cable 1930; Gunter 1945; Reid 1954; Wang and Raney 1971; Grimes 1971; Hastings 1972; **Brusher** 1977; Naughton and Saloman 1978; Darcy 1983). Hastings (1972) noted that pigfish were absent collections made at temperatures of 12 to 14 °C; however adults were abundant when waters of St. Andrew Bay, Florida, warned to 16.5 to 31.0 °C. Mbe and Martin (1965) also noted that pigfish were not collected when water temperatures in Pinellas County, Florida, dropped U. S. National Marine Fisheries Service (1985a). ^{&#}x27;d.S. National Marine Fisheries Service (1985b). U.S. National Marine Fisheries Service (1986). ^{*}means none reported. ⁻⁻ means less than 30,000 reported; however, the figure is included in removed colum totals. Table 3. Food of pigfish (percentage frequency of occurrence) from Crystal River, Florida (from Reid 1954). | | | Size of fish (| (mm) | |------------------|--------|----------------|---------| | Food item | 25- 50 | 51-150 | 151-170 | | Copepods | 83 | 38 | | | Ostracods | 50 | | | | Anphi pods | | 54 | 10 | | Shrinps | 17 | 56 | 40 | | Crabs | | 5 | 20 | | Mollusks | | _ | 20 | | Polychaetes | 17 | 8 | 60 | | Fishes | | 5 | | | Insects | | _ | 10 | below 12.5 °C. Moore (1976) reported that pigfish were killed during a cold wave that caused water temperatures to drop to 4.5 °C (Darcy 1983). Low salinity areas also appear to be avoided by pigfish. In Charlotte Harbor, Florida, Wang and Raney (1971) reported that pigfish were not taken in waters with salinity values less than 15 ppt. Gunter (1945) found all pigfish less than 50 mm TL and greater than 200 mm TL in Texas gulf waters in salinities greater than 25 ppt; no specimens were taken in less than 10 ppt. Reid (1954) noted a mass mortality of pigfish, as well as other species, after a hurricane caused salinities to drop from 23.5 ppt to 9.7 ppt over a 4-day period in Goose Cove, Florida. However, it was probably the rapid drop rather than the low salinity that caused the mortality (Darcy 1983). #### Dissolved Oxygen Schwartz et al. (1982) collected pigfish from waters with dissolved oxygen concentrations of 2.1 to 11.8 ppm in_ Cape Fear Estuary, North Carolina. #### **Substrate** Juvenile pigfish in Crystal River were found on shallow flats with considerable plant growth spring and early summer (Reid 1954). As the summer and fall progressed, juvenile pigfish moved to deep flats and the edges of channels. were taken from deeper flats and channels with sparse vegetation. Adult pigfish occurred most frequently over mud bottoms and occasionally over sandy, vegetated areas (Hildebrand and Schroeder 1928: 1961), Tabb and Manni ng hard substrates such as reefs and jetties (Hastings 1972), and offshore platforms (Hastings et al. 1976). #### LITERATURE CITED - Breder, C. M Jr. 1948. Field book of marine fishes of the Atlantic coast from Labrador to Texas. G. P. Putnamis Sons, New York. 332 pp. - Briggs, J. C. 1958. A list of Florida fishes and their distribution. Bull. Fla. State Mss. Biol. Ser. 2(8):223-318. - Carr, W. E. S. 1976. Chemoreception and feeding behavior in the pigfish, Orthopristis chrysopterus: characterization and identification of stimulatory substances in a shrinp extract. Comp. Biochem Physiol. 55(A):153-157. - Carr, W E. S., and C. A. Adams. 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. Trans. Am Fish. Soc. 102:511-540. - Cody, T. J., K. W Rice, and C. E. Bryan. 1978. Commercial fish and penaeid shrinp studies northwestern Gulf of Mexico. Pt. 5. Abundance and distribution of fauna on the white shrinp, Penaeus setiferus (Linnaeus), grounds off the central Texas coast. Coastal Fish. Branch, Tex. Parks Wildl. Dep., P. L. 88-309, Proj. 2-276-R. 39 pp. - Courtenay, W R., Jr., and H. F. Sahlman. 1978. Pomadasyidae. Vol. 4, Unpaginated in W Fischer, ed. FAO species identification sheets for fishery purposes, western central Atlantic (Fishing area 31). Food and Agriculture Organization of the United Nations, Rome. - Darcy, G. H. 1983. Synopsis of biological data on the pigfish, Orthopristis chrysoptera. (Pisces: Haemulidae). FAO Fish. Synop. No. 134. 23 pp. - Dunham F. 1972. A study of connercially important estuarine-dependent industrial fishes. La. Wildl. Fish. Comm., Tech. Bull 4. 63 PP. - Franks, J. S. 1970. An investigation of the fish population within the inland waters of Horn Island, Mississippi, a barrier island in the northern Gulf of Mexico. Gulf Res. Rep. 3:3-104. - Grines, C. B. 1971. Thermal addition studies of the Crystal -River steam electric station. Fla. Dep. Nat. Resour. Mar. Res. Lab. Prof. Pap. Ser. 11. 53 pp. - Grines, C. B., and J. A. Mountain. 1971. Effects of thermal effluent upon marine fishes near the Crystal River steam electric station. Fla. Dep. Nat. Resour. Mar. Res. Lab. Prof. Pap. Ser. 17. 64 pp. - Gunter, G. 1945. Studies on marine fishes of Texas. Publ. Inst. Mar. Sci. Univ. Tex. 1:1-90. - Hastings, R. W 1972. The origin and seasonality of the fish fauna on a new jetty in the northeastern Gulf of Mexico. Ph. D. Thesis. Florida State University, Tallahassee. 555 pp. - Hastings, R. W, L. H. Ogren, and M T. Mabry. 1976. Observations - on the fish fauna associated with offshore platforms in the north-eastern Gulf of Mexico. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 74: 387-402. - Hildebrand, H. H. 1954. A study of the fauna of the brown shrimp (Penaeus aztecus Ives) grounds in the western Gulf. Publ. Inst. Mar. Sci. Univ. Tex. 3:233-366. - Hildebrand, S. F., and L. E. Cable. 1930. Development and life history of fourteen teleostean fishes at Beaufort, N. C. U. S. Bur. Fish. Bull. 46:383-488. - Hildebrand, S. F., and W C. Schroeder. 1928. Fishes of Chesapeake Bay. U.S. Bur. Fish Bull. 43, Pt. 1:1-388. - Hoese, H. D. 1965. Spawning of marine fishes in Port Aransas, Texas, area as determined by the distribution of young and larvae. Ph. D. Dissertation, University of Texas, Austin. 144 pp. - Hoese, H. D. and R. H. Moore. 1977. Fishes of the Gulf of Mexico, Texas, Louisiana, and adjacent waters. Texas A&M University Press, Austin. 327 pp. - Houde, E. D., J. C. Leak, C. E. Dowd, S. A. Berkeley, and W J. Richards. 1979. Ichthyoplankton abundance and diversity in the eastern Gulf of Mexico. Report to the Bureau of Land Management, under Contract No. AA550-CT7-28, 546 pp. - Joseph, E. B., and R. W Yerger. 1956. The fishes of Alligator Harbor, Florida, with notes on their natural history. Pap. Oceanogr. Inst. Fla. State Univ. Stud. 22:111-156. - Johnson, G. D. 1978. Development of fishes of the mid-Atlantic bight; an atlas of eggs, larval and juvenile stages. Vol. IV. U.S. - Fish Wildl. Serv. Biol. Serv. Program FWS/0BS-78/12. - Konchina, Y. V. 1977. Some data on the biology of grunts (Family Pomadasyidae). [In Russ.] Vopr. Ikhtiol. 17:621-633. (Transl. J. Ichthyol. 17:548-558). - Mbe, M A., Jr., and G. T. Martin. 1965. Fishes taken in monthly trawl samples offshore of Pinellas County, Florida, with new additions to the fish fauna of the Tampa Bay area. Tulane Stud. Zool. 12:129-151. - More, R. H. 1976. Observations on fishes killed by cold at Port Aransas, Texas, 11-12 January 1973. Southwest. Nat. 20:461-466. - Naughton, S. P., and C. H. Saloman. 1978. Fishes of the nearshore zone of St. Andrew Bay, Florida, and adjacent coast. Northeast Gulf Sci. 2:43-55. - Dgren, L. H., and H. A. Brusher. 1977. The distribution and abundance of fishes caught with a trawl in the St. Andrew Bay System, Florida. Northeast 'Gulf Sci. 1:83-105. - Pristas, P. J., and L. Trent. 1978. Seasonal abundance, size and sex ratio of fishes caught with gill nets in St. Andrew Bay, Florida. Bull. Mar. Sci. 28:581-589. - Radcliffe, L. 1916. The sharks and rays of Beaufort, North Carolina. U.S. Bur. Fish. Bull. 34: 239-284. - Reid, G. K. 1954. An ecological study of the Gulf of Mexico fishes in the vicinity of Cedar Key, Fla. Bull. Mar. Sci. Gulf Caribb. 4(1): 1-94. - Roessler, M. A. 1970. Checklist of fishes in Buttonwood Canal Everglades National Park, Florida', and observations on the seasonal - occurrence and life histories of selected species. Bull. Mar. Sci. 20(4):860-893. - Schwartz, F. J., W T. Hogarth, and M P. Weinstein. 1982. Marine and freshwater fishes of the Cape Fear Estuary, North Carolina, and their distribution in relation to environmental factors. Brimleyana 7:17-37. - Smith, H. M. 1907. The fishes of North Carolina. N.C. Geol. Econ. Surv. 2:1-458. - Springer, V. G., and K. D. Woodburn. 1960. An ecological study of the fishes of the Tampa Bay area. Fla. Board Conserv. Mar. Lab., Prof. Pap. Ser. 1. 104 pp. - Suydam, E. L. 1971. The microecology of three species of monogenetic trematodes of fishes from the Beaufort-Cape Hatteras area. Proc. Helminthol. Soc. Wash. 38: 240-246. - Tabb, D. C., and R. B. Manning. 1961. A checklist of the flora and fauna of northern Florida Bay and adjacent brackish waters of the Florida mainland collected during the period July, 1957 through September, 1960. Bull. Mar. Sci. Gulf Caribb. 11: 552-649. - Taylor, H. F. 1916. The structure and growth of the scales of the squeteague and the pigfish as indicative of life history. U. S. Bur. Fish. Bull. 34:285-330. - Towers, I. L. 1928. Embryology of the pigfish. Pages 622-624 in E. - ggens, ed. Progress in biological inquiries. U.S. Tish. Comm Rep. 1927: App. VII. i.ur. Fish. Doc. 1029: 517-588. - U.S. National Marine Fisheries Service. 1980. Marine recreational statistics survey, Atlantic and gulf coasts, 1979. U.S. Natl Mar. Fish. Serv. Curr. Fish. Stat: 8063. 139 pp. - U.S. National Marine Fisheries Service. 1985a. Marine recreational fishery statistics survey, Atlantic and gulf coasts, 1981-1982. U.S. Natl. Mar. Fish. Serv. Curr. Fish. Stat. 8324. 215 pp. - U.S. National Marine Fisheries Service. 1985b. Marine recreational fishery statistics survey, Atlantic and gulf coasts, 1983-1984. U.S. Natl. Mar. Fish. Serv. Curr. Fish. Stat. 8326. 222 pp. - U.S. National Marine Fisheries Service. 1986. Marine recreational fishery statistics survey, Atlantic and gulf coasts, 1985. U.S. Natl. Mar. Fish. Serv. Curr. Fish. Stat. 8327. 130 pp. - Wang, J. C. S., and E. C. Raney. 1971. Distribution and fluctuations in the fish fauna of the Charlotte Harbor Estuary, Florida. Charlotte Harbor Estuarine Study, Mote Marine Laboratory, Sarasota, Florida 56 PP. - Watson, W 1983. Redescription of larvae of the pigfish, Orthopristis chrysoptera Linnaeus (Pisces, Haemulidae). U. S. Fish Wildl. Serv. Fish. Bull. 81:847-854. | PAGE B | EPORT NO. | 2 | 2 Recipient's Accession No. | |--|---|--|---| | | iological R | eport 82(11.71)* | | | . Title and Subtitle | | <u>-</u> | S. Report Data | | | | and Environmental Requirements of | March 1987 | | Coastal Fishes and Inve | rtebrates ((| Gulf of Mexico)Pigfish | 6 | | . Author(s) | | | 8. Perferming Organization Rept. i | | F.C. Sutter and T.D. Mo | :Ilwain | | | |). Performing Organization Name and Ad | dress | | 10. Project/Task/Work Unit No. | | | | | 11. Contract(C) or Grant(G) No. | | | | | (C) | | | | | _ (G | | 2. Sponsoring Organization Name and Ac | Idrees | | | | National Wetlands Resear | | U.S. Army Corps of Engineers | 13. Type of Report & Period Cover | | Fish and Wildlife Service | | Waterways Experiment Station | | | U.S. Dept. of the Inter | ior | P. O. Box 631 | 14. | | Washington, DC 20240 | | Vicksburg, MS 39180 | | | | | | | | S. Supplementary Notes | | | | | *U.S. Army Corps of Eng | ineers Repor | rt No. TR EL-82-4 | | | environmental impact as | sessment. | coastal aquatic species. They are | | | Pigfish spawn during latin nearshore or estuariother species of fish (areas; they are also for platforms. Recreational waters. Pigfish have liconsidered to be a good carnivorous as they grotaken in water temperathowever, they have been Pigfish are found over | ne environme.g. pinfishund in offshund in offshund ittle econome quality foow in lengthures ranging found in wegetated sa | Pigfish are common inhabitants of wend spring in open gulf waters. You ents in April to June. Juvenile parts in April to June. Juvenile parts in April to June. Juvenile parts in Adult pigfish are found in his more, open shelf waters, as well as frequently catch pigfish, especial wic value; however, they are used of fish. Young pigfish are plankt (first polychaetes, then shrimps). If the first polychaetes, then shrimps is from 13.7 to 36 °C, and in saling armer water with salinities greated and substrates, muddy bottoms, or atforms. Pigfish are prey of spot | arm gulf waters. Ing fish first appear igfish may school with gher salinity, coastal is offshore reefs and ily in Florida gulf for live bait and are ivorous, becoming Pigfish have been ities of 0 to 38 ppt; r than about 15 ppt. hard substrates, such | (See ANSI-Z39.18) e. COSATI Field/Group IL Availability Statement a Price 19. Security Class (This Report) Unclassified 20. Security Class (This Page) Unclassified Unlimited availability # TAKE PRIDE in America U.S. DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of **our nationally** owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving theenvironmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island **territories** under U.S. administration.